Selected Solutions for Chapter 22:
 Elementary Graph Algorithms

Solution to Exercise 22.1-7

$$
B B^{T}(i, j)=\sum_{e \in E} b_{i e} b_{e j}^{T}=\sum_{e \in E} b_{i e} b_{j e}
$$

- If $i=j$, then $b_{i e} b_{j e}=1$ (it is $1 \cdot 1$ or $\left.(-1) \cdot(-1)\right)$ whenever e enters or leaves vertex i, and 0 otherwise.
- If $i \neq j$, then $b_{i e} b_{j e}=-1$ when $e=(i, j)$ or $e=(j, i)$, and 0 otherwise.

Thus,

$$
B B^{T}(i, j)= \begin{cases}\text { degree of } i=\text { in-degree }+ \text { out-degree } & \text { if } i=j, \\ -(\# \text { of edges connecting } i \text { and } j) & \text { if } i \neq j\end{cases}
$$

Solution to Exercise 22.2-5

The correctness proof for the BFS algorithm shows that $u . d=\delta(s, u)$, and the algorithm doesn't assume that the adjacency lists are in any particular order.
In Figure 22.3, if t precedes x in $\operatorname{Adj}[w]$, we can get the breadth-first tree shown in the figure. But if x precedes t in $\operatorname{Adj}[w]$ and u precedes y in $\operatorname{Adj}[x]$, we can get edge (x, u) in the breadth-first tree.

Solution to Exercise 22.3-12

The following pseudocode modifies the DFS and DFS-VISIT procedures to assign values to the $c c$ attributes of vertices.

```
DFS(G)
for each vertex \(u \in G . V\)
    u.color \(=\) WHITE
    \(u . \pi=\) NIL
time \(=0\)
counter \(=0\)
for each vertex \(u \in G . V\)
    if \(u\). color \(==\) WHITE
        counter \(=\) counter +1
        DFS-Visit( \(G, u\), counter)
    DFS-ViSIT(G, \(u\), counter \()\)
    u.cc \(=\) counter \(\quad / /\) label the vertex
    time \(=\) time +1
    u.d = time
    u.color \(=\) GRAY
for each \(v \in G . A d j[u]\)
    if \(v\). color \(==\) WHITE
        \(\nu . \pi=u\)
        DFS-VISIT( \(G, v\), counter \()\)
u.color \(=\) BLACK
time \(=\) time +1
u. \(f=\) time
```

This DFS increments a counter each time DFS-VISIT is called to grow a new tree in the DFS forest. Every vertex visited (and added to the tree) by DFS-VISIT is labeled with that same counter value. Thus $u . c c=v . c c$ if and only if u and v are visited in the same call to DFS-VISIT from DFS, and the final value of the counter is the number of calls that were made to DFS-VISIT by DFS. Also, since every vertex is visited eventually, every vertex is labeled.

Thus all we need to show is that the vertices visited by each call to DFS-VISIT from DFS are exactly the vertices in one connected component of G.

- All vertices in a connected component are visited by one call to DFS-VISIT from DFS:
Let u be the first vertex in component C visited by DFS-Visit. Since a vertex becomes non-white only when it is visited, all vertices in C are white when DFS-Visit is called for u. Thus, by the white-path theorem, all vertices in C become descendants of u in the forest, which means that all vertices in C are visited (by recursive calls to DFS-VISIT) before DFS-VISIT returns to DFS.
- All vertices visited by one call to DFS-Visit from DFS are in the same connected component:

If two vertices are visited in the same call to DFS-VISIT from DFS, they are in the same connected component, because vertices are visited only by following paths in G (by following edges found in adjacency lists, starting from some vertex).

Solution to Exercise 22.4-3

An undirected graph is acyclic (i.e., a forest) if and only if a DFS yields no back edges.

- If there's a back edge, there's a cycle.
- If there's no back edge, then by Theorem 22.10, there are only tree edges. Hence, the graph is acyclic.

Thus, we can run DFS: if we find a back edge, there's a cycle.

- Time: $O(V)$. $(\operatorname{Not} O(V+E)$!)

If we ever see $|V|$ distinct edges, we must have seen a back edge because (by Theorem B. 2 on p. 1174) in an acyclic (undirected) forest, $|E| \leq|V|-1$.

Solution to Problem 22-1

a. 1. Suppose (u, v) is a back edge or a forward edge in a BFS of an undirected graph. Then one of u and v, say u, is a proper ancestor of the other (ν) in the breadth-first tree. Since we explore all edges of u before exploring any edges of any of u 's descendants, we must explore the edge (u, v) at the time we explore u. But then (u, v) must be a tree edge.
2. In BFS, an edge (u, v) is a tree edge when we set $v . \pi=u$. But we only do so when we set $v . d=u . d+1$. Since neither $u . d$ nor $v . d$ ever changes thereafter, we have $v . d=u . d+1$ when BFS completes.
3. Consider a cross edge (u, v) where, without loss of generality, u is visited before v. At the time we visit u, vertex v must already be on the queue, for otherwise (u, v) would be a tree edge. Because v is on the queue, we have $v . d \leq u . d+1$ by Lemma 22.3. By Corollary 22.4 , we have v. $d \geq u . d$. Thus, either $v . d=u \cdot d$ or $v . d=u \cdot d+1$.
b. 1. Suppose (u, v) is a forward edge. Then we would have explored it while visiting u, and it would have been a tree edge.
2. Same as for undirected graphs.
3. For any edge (u, v), whether or not it's a cross edge, we cannot have $v . d>u . d+1$, since we visit v at the latest when we explore edge (u, v). Thus, $v . d \leq u . d+1$.
4. Clearly, $v . d \geq 0$ for all vertices v. For a back edge $(u, v), v$ is an ancestor of u in the breadth-first tree, which means that $v . d \leq u$.d. (Note that since self-loops are considered to be back edges, we could have $u=v$.)

