
Selected Solutions for Chapter 22:
Elementary Graph Algorithms

Solution to Exercise 22.1-7

BBT .i; j / D
X

e2E

biebT
ej D

X

e2E

biebje

� If i D j , thenbiebje D 1 (it is 1 � 1 or .�1/ � .�1/) whenevere enters or leaves
vertexi , and 0 otherwise.

� If i ¤ j , thenbiebje D �1 whene D .i; j / or e D .j; i/, and 0 otherwise.

Thus,

BBT .i; j / D

(

degree ofi D in-degreeC out-degree ifi D j ;

�.# of edges connectingi andj / if i ¤ j :

Solution to Exercise 22.2-5

The correctness proof for the BFS algorithm shows thatu:d D ı.s; u/, and the
algorithm doesn’t assume that the adjacency lists are in anyparticular order.

In Figure 22.3, ift precedesx in AdjŒw�, we can get the breadth-first tree shown
in the figure. But ifx precedest in AdjŒw� andu precedesy in AdjŒx�, we can get
edge.x; u/ in the breadth-first tree.

Solution to Exercise 22.3-12

The following pseudocode modifies the DFS and DFS-VISIT procedures to assign
values to thecc attributes of vertices.



22-2 Selected Solutions for Chapter 22: Elementary Graph Algorithms

DFS.G/

for each vertexu 2 G:V
u:color D WHITE

u:� D NIL

time D 0

counter D 0

for each vertexu 2 G:V
if u:color == WHITE

counter D counter C 1

DFS-VISIT.G; u; counter/

DFS-VISIT.G; u; counter/

u:cc D counter // label the vertex
time D time C 1

u:d D time
u:color D GRAY

for each� 2 G:AdjŒu�

if �:color == WHITE

�:� D u

DFS-VISIT.G; �; counter/
u:color D BLACK

time D time C 1

u: f D time

This DFS increments a counter each time DFS-VISIT is called to grow a new tree
in the DFS forest. Every vertex visited (and added to the tree) by DFS-VISIT is
labeled with that same counter value. Thusu:cc D �:cc if and only if u and� are
visited in the same call to DFS-VISIT from DFS, and the final value of the counter
is the number of calls that were made to DFS-VISIT by DFS. Also, since every
vertex is visited eventually, every vertex is labeled.

Thus all we need to show is that the vertices visited by each call to DFS-VISIT

from DFS are exactly the vertices in one connected componentof G.

� All vertices in a connected component are visited by one callto DFS-VISIT

from DFS:

Let u be the first vertex in componentC visited by DFS-VISIT. Since a vertex
becomes non-white only when it is visited, all vertices inC are white when
DFS-VISIT is called foru. Thus, by the white-path theorem, all vertices inC

become descendants ofu in the forest, which means that all vertices inC are
visited (by recursive calls to DFS-VISIT) before DFS-VISIT returns to DFS.

� All vertices visited by one call to DFS-VISIT from DFS are in the same con-
nected component:

If two vertices are visited in the same call to DFS-VISIT from DFS, they are in
the same connected component, because vertices are visitedonly by following
paths inG (by following edges found in adjacency lists, starting fromsome
vertex).



Selected Solutions for Chapter 22: Elementary Graph Algorithms 22-3

Solution to Exercise 22.4-3

An undirected graph is acyclic (i.e., a forest) if and only ifa DFS yields no back
edges.

� If there’s a back edge, there’s a cycle.
� If there’s no back edge, then by Theorem 22.10, there are onlytree edges.

Hence, the graph is acyclic.

Thus, we can run DFS: if we find a back edge, there’s a cycle.

� Time: O.V /. (Not O.V C E/!)
If we ever seejV j distinct edges, we must have seen a back edge because (by
Theorem B.2 on p. 1174) in an acyclic (undirected) forest,jEj � jV j � 1.

Solution to Problem 22-1

a. 1. Suppose.u; �/ is a back edge or a forward edge in a BFS of an undirected
graph. Then one ofu and�, sayu, is a proper ancestor of the other (�) in
the breadth-first tree. Since we explore all edges ofu before exploring any
edges of any ofu’s descendants, we must explore the edge.u; �/ at the time
we exploreu. But then.u; �/ must be a tree edge.

2. In BFS, an edge.u; �/ is a tree edge when we set�:� D u. But we only
do so when we set�:d D u:d C 1. Since neitheru:d nor �:d ever changes
thereafter, we have�:d D u:d C 1 when BFS completes.

3. Consider a cross edge.u; �/ where, without loss of generality,u is visited
before�. At the time we visitu, vertex� must already be on the queue, for
otherwise.u; �/ would be a tree edge. Because� is on the queue, we have
�:d � u:d C 1 by Lemma 22.3. By Corollary 22.4, we have�:d � u:d.
Thus, either�:d D u:d or �:d D u:d C 1.

b. 1. Suppose.u; �/ is a forward edge. Then we would have explored it while
visiting u, and it would have been a tree edge.

2. Same as for undirected graphs.
3. For any edge.u; �/, whether or not it’s a cross edge, we cannot have

�:d > u:d C 1, since we visit� at the latest when we explore edge.u; �/.
Thus,�:d � u:d C 1.

4. Clearly,�:d � 0 for all vertices�. For a back edge.u; �/, � is an ancestor
of u in the breadth-first tree, which means that�:d � u:d. (Note that since
self-loops are considered to be back edges, we could haveu D �.)


